Comparison of Linear Classification Methods for P300 Brain-computer Interface on Disabled Subjects

نویسندگان

  • Nikolay V. Manyakov
  • Nikolay Chumerin
  • Adrien Combaz
  • Marc M. Van Hulle
چکیده

In this paper, we investigate the accuracy of linear classification techniques for a P300 Brain-Computer Interface used in a typing paradigm. Fisher’s Linear Discriminant Analysis (LDA), Bayesian Linear Discriminant Analysis (BLDA), Stepwise Linear Discriminant Analysis (SLDA), linear Support Vector Machine (SVM) and a method based on Feature Extraction (FE) were compared. Experiments were performed on patients suffering from Amyotrophic Lateral Sclerosis (ALS), middle cerebral artery (MCA) stroke and Subarachnoid Hemorrhage (SAH), in on-line and off-line mode. Our results show that BLDA yields a significantly higher accuracy than the other linear techniques we have compared, at least for our group of subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Classification Methods for P300 Brain-Computer Interface on Disabled Subjects

We report on tests with a mind typing paradigm based on a P300 brain-computer interface (BCI) on a group of amyotrophic lateral sclerosis (ALS), middle cerebral artery (MCA) stroke, and subarachnoid hemorrhage (SAH) patients, suffering from motor and speech disabilities. We investigate the achieved typing accuracy given the individual patient's disorder, and how it correlates with the type of c...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

An efficient P300-based brain-computer interface for disabled subjects.

A brain-computer interface (BCI) is a communication system that translates brain-activity into commands for a computer or other devices. In other words, a BCI allows users to act on their environment by using only brain-activity, without using peripheral nerves and muscles. In this paper, we present a BCI that achieves high classification accuracy and high bitrates for both disabled and able-bo...

متن کامل

Comparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System

 Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...

متن کامل

سنجش عملکرد سامانه‌های رابط مغز و رایانه P300 Speller به‌ازای ماتریس نمایش ردیف و یا ستون (RCP) و نمایش حروف زبان فارسی

As a Brain computer interface system, BCI P300 Speller tries to help disabled people and patients to regain some of their lost ability with allowing communication via typing. The ability of personalization is one of the most important features in a BCI system, so the typing language as a personalization factor is an important feature in a BCI speller. Most prior researches on P300 Speller has f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011